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Abstract
Laser beam machining (LBM) is a promising manufacturing process that exhibits several desirable quality characteristics. 
Given a large number of objective functions, the level of complexity increases in an optimization problem. Therefore, this 
study presents a multivariate application of the normal boundary intersection (NBI) method to reduce dimensionality in 
optimization problems of the LBM process. Such an approach is capable of exploring the entire solution space with only 
a small number of Pareto points, and generating equispaced frontiers based on the objective functions written in terms of 
principal component scores. Hence, a design of experiment with three input parameters and six quality characteristics was 
undertaken to appropriately model the process requirements applied to AISI 314S steel. The results indicate that the pro-
posed methodology is capable of achieving optimal values for interest characteristics. In addition, this approach shows a 
reduction in computational effort of approximately 91.89% (from 259 to 21 subproblems) in obtaining the best solution for 
rough operation.

Keywords Laser beam machining · Principal component analysis · Normal boundary intersection · Material removal rate · 
Roughness

1 Introduction

Manufacturing processes, such as machining processes, pre-
sent many critical quality characteristics, such as various 
types of roughness, as well as performance and productivity 
characteristics. Among the machining processes, the laser 
beam machining (LBM) process is prevalent as a promising 
and non-consumable method. LBM is a non-conventional 
method that exhibits several industrial advantages [1], in 

addition to being widely applicable in automotive, civil, 
and nuclear sectors [2]. This process has high potential for 
applications in precision mechanics and micromechanics, 
but the expansion is being postponed due to a high initial 
investment cost and the high energy consumption involved in 
the process. This difficulty causes the number of published 
studies to be reduced, limiting the information on the appro-
priate parameters to allow optimization of the manufacturing 
process, either the rate of removal of material or the finish 
of the roughness surfaces. Many studies of multiobjective 
applications can be found in the literature, such as [3–8], 
however the LBM process is not very exploited.

Machining processes are, in general, considered as mul-
tiobjective problems once they involve more than one per-
formance characteristic. LBM processes involve important 
input parameters, each of which is crucial in the process. 
Some of the main parameters are the following: laser fre-
quency (f), cutting speed (S), laser power (I), pulse intensity, 
[9]. The main quality characteristics investigated in LBM are 
the material removal rate (MRR), roughness, and metallurgi-
cal and mechanical properties [2].
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An advantage of the LBM process, compared to other 
types of machining processes, is that the material removal 
is performed without contact with the workpiece. This mate-
rial removal from the workpiece is machined with preci-
sion and minimal dispersion, in addition to the non-use of 
consumables (tool wear). In the LBM process, the basic 
material removal mechanism is performed from the energy 
absorption of the laser in front of a series of pulses directed 
at the same point. The laser beam interacts thermally with 
the workpiece and when the laser beam focuses on the work-
piece surface, an interaction occurs followed by a thermal 
reaction [10, 11]. During this interaction, the laser energy 
is transformed into thermal energy. The thermal energy 
intensity increases with each beam pulse. Thus, the surface 
temperature increases rapidly until the workpiece material 
starts to melt and vaporize; consequently, the material is 
removed layer by layer.

LBM can be performed on a wide range of materials [12, 
13]. The laser beam interaction is different in metallic and 
non-metallic materials. In metallic materials, the laser focus 
dissolves and vaporizes the surface of the material through 
thermal reaction; this is known as metal sublimation. How-
ever, in non-metallic materials such as polymers, the laser 
interaction can break the molecular chains, which is a pro-
cess known as laser ablation [14]. For this study, we will use 
a metallic material that is AISI 314S stainless steel, that was 
used in previous studies [15, 16].

Laser beam is used widely in cutting [11], drilling [10], 
micromachining [10, 17–20], and welding [21, 22]. Lasers 
can also be used to perform turning and milling operations 
[2]. Most of the input parameters affect the dimensional 
accuracy and product quality directly. Thus, it is necessary 
to establish the appropriate process parameters to satisfy 
the conflicting objectives of this process simultaneously 
[23]. The quality of the laser-machined workpieces can be 
improved through the proper optimization and control of 
various process parameters [11]. For optimization applica-
tions, many previous machining studies use strategies such 
as the design of experiment (DOE) [24]. The DOE is a 
statistical technique used to reduce experimental costs, to 
model and optimize the experiments [24–26]. The response 
surface methodology (RSM) is a DOE typically used in 
manufacturing, with applicability in several processes [27]. 
The DOE strategy is also used in LBM process studies, such 
as Taguchi design [9, 17, 28] and RSM [29, 30]. From all 
RSM designs, Almeida et al. [24] highlighted the central 
composite design (CCD) capable of generating complete 
quadratic models.

LBM demonstrates many interesting characteristics such 
as roughness and MRR that can be influenced by the input 
parameters. The DOE techniques aim to plan the param-
eters accurately for an experimental process and minimize 
algorithms optimization computational work. Several studies 

have used the RSM to model machine parameters in LBM 
and other machining processes [20, 31, 32].

In processes that present several quality characteristics, 
such as LBM, a significant correlation may exist between 
those characteristics. In this case, the variance–covariance 
data structure must be considered. To analyze multicorre-
lated response adequately, it is necessary to use multivariate 
strategies, such as the principal component analysis (PCA). 
This technique considers and analyzes multivariate data and 
can reduce the dimensionality of the problem. Hence, the 
iterations, subproblem numbers, and computational effort 
of the algorithms can be minimized.

Considering the characteristics presented in this process, 
this work aims to perform the optimization of the LBM pro-
cess using multivariate techniques such as PCA to reduce 
the computational effort of optimization problems and, 
consequently, to consider the variance–covariance structure 
of this process [33]. The application will be performed in 
AISI 314S stainless steel and the optimization process will 
be conducted by the normal boundary intersection (NBI) 
method, which is a multiobjective optimization algorithm 
capable of generating balanced and equidistant Pareto fron-
tiers. Figure 1 illustrates how the proposed procedure will 
be performed, through an Ishikawa diagram.

This paper is organized as follows: Sect. 2 presents the 
theoretical background describing the strategies of RSM, 
PCA, and the multiobjective optimization by the NBI 
method used in his work; Sect. 3 describes the materials 
and methods used; Sect. 4 presents the application, method, 
results, technical discussion and confirmation runs; Sect. 5 
presents the comparisons with NBI without the PCA strat-
egy; finally, Sect. 6 draws the conclusion.

2  Theoretical background

2.1  Response surface methodology

RSM is a technique that aims to optimize a certain response 
[34, 35]; its implementation is easy and economical [36], 
and it does not require many experimental runs [37]. Equa-
tion (1) shows the second-order polynomial that represents 
the response surface [24, 38]:

where Y are the responses, x the parameters, β the estimated 
coefficients, k the number of independent variables, and ε 
the associated error term.

According to Montgomery [34], a CCD is the most 
frequently used array to fit second-order models. A 

(1)Y = 𝛽0 +

k∑
i=1

𝛽ixi +

k∑
i=1

𝛽iix
2
i
+
∑
i<j

∑
𝛽ijxixj + 𝜀,
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CCD is composed of  2k factorial, 2k axial, and cp center 
points, and is used widely in machining applications, 
such as those reported in [24, 39–43]. In addition, CCD 
presents greater advantages than other types of design 
[34]. A geometrical representation of the CCD is shown 
in Fig. 2.

2.2  Principal component analysis

In manufacturing processes with multiple responses, using 
univariate techniques may not be favorable owing to the mul-
tivariate response nature. Therefore, it is more appropriate 

to use multivariate techniques. PCA is a multivariate analy-
sis technique that minimizes data dimensionality and can 
represent several correlated responses in a small number of 
uncorrelated latent variables [32].

According to Johnson and Wichern [44], when objec-
tive functions f1(x), f2(x), …, fp(x) are correlated in terms 
of the aleatory vector YT = [Y1, Y2,…, Yp] and Ʃ is the 
variance–covariance matrix associated to this vector, 
Ʃ can be divided by eigenvalues and eigenvectors (λi, 
ei),..., ≥ (λp, ep), where (λ1 ≥ λ1 ≥ .…≥ λp ≥ 0), and ith 
is the non-correlated linear combination designated by 
PC1 = eT

i
Y = eT

1
Y1 + eT

2
Y2 + ... + eT

p
Yp , with i = 1,2,…,p. 

The ith principal component (PC) can be obtained by 

Fig. 1  Ishikawa diagram for the methods applied in this study

Fig. 2  CCD geometric representation for k = 2 and k = 3. Adapted from [34]
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maximizing the linear combination. A set of original 
variables can be replaced by uncorrelated linear com-
binations in the PC form and can be expressed in terms 
of a matrix [44]. Such dimensionality reduction favors 
optimization techniques, presenting better computational 
modeling and more accurate results.

2.3  Normal boundary intersection

The NBI method, proposed by [45], is a multiobjective opti-
mization approach capable of obtaining equispaced Pareto-
optimal solutions [46], superior to the method of weighted 
sums [27, 47, 48]. The NBI mathematical formulation can be 
written as in Eq. 2.

where Φ represents the payoff matrix, obtained by the indi-
vidual optimization of each objective function; � is the 
scaled payoff matrix; β refers to the weight vector for each 
utopia point; t is a scalar that is perpendicular to the utopia 
line. �̂� is the normal vector and �(�) represents the vector of 
the dimensioned objective functions. In the payoff matrix 
( � ) and scaled payoff matrix ( � ), the ith line consists of 
the minimum and maximum values of the fi (x) function 
[46, 47].

The Utopia point is the vector that contains the individ-
ual optimum f U =

[
f ∗
1
(x∗

1
),… , f ∗

i
(x∗

i
),… , f ∗

m
(x∗

m
)
]T . It is the 

best possible value but is typically outside the viable solution 
region. On the contrary, the Nadir point contains the non-opti-
mum value of each objective function and is the worst possible 
solution f N =

[
f N
1
,… , f N

i
,… , f N

m

]T [34]. The payoff matrices 
are described by Eq. (3):
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where f i(�) =
[
fi(�)−f

U
i

f N
i
−f U

i

]
=

[
fi(�)−f

I
i

f MAX
i

−f I
i

]
.

Therefore, for bi-objective problems, the NBI formulation 
of Eq. (2) can be rewritten as in Eq. (4):

2.4  Entropy and global percentage error (GPE)

In front of a Pareto frontier, it is necessary to choose 
the best point to consider. Several studies in the litera-
ture used different techniques for this choice, such as 
the global percentage error (GPE) [49] and the fuzzy 
multivariate algorithm [50].

In the study by [51], the authors proposed a strategy 
that would consider the use of two metrics for the opti-
mal choice of the point in the multiobjective optimization 
applied to the vertical turning. Thus, from the calculation 
of the GPE, described in Eq. (5), and the entropy index 
proposed by [52], described in Eq. (6), we can obtain 
the optimal point of the Pareto frontier by calculating 
Eq. (7).

(4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Min
�

F(�) = f 1(x)

St. ∶ f 1(�) − f 2(�) + 2�1 − 1 = 0

� ∈ Ω

gj(�) ≤ 0

hj+1(x) = 0

.

(5)GPE =

m∑
i=1

|||||
y∗
i

Ti
− 1

|||||
,

(6)
Entropy = −

m∑
i=1

wi ln(wi)

s.t. ∶ 0 ≤ wi ≤ 1,
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where yi
* is the value of the Pareto optimal responses; Ti are 

the defined targets; m is the number of targets.

3  NBI PCA‑based approach to reduce 
dimensionality in optimization problems 
for LBM process

3.1  Materials

For the accomplishment of the experimental procedure, 
AISI 314S stainless steel of composition 0.25% C, 26% 
Cr-max, 47% Fe, 2% Mn, 22% Ni-max, 0.003% S, and 3% 
Si-max was used. This steel has wide applicability and 
was used in previous studies [15, 16]. This selection con-
sidered the technological application field, material suit-
ability in precision mechanics, and micromold manufac-
turing. The workpiece is a small flat box with dimensions 
10 mm × 10 mm × 0.1 mm, representative of the applica-
tion field, and allows for the surface roughness measure-
ment (Fig. 3).

The experiments were performed with the Deckel Maho 
 Lasertec® machine; for LBM, model DML40SI was used 
(Fig. 4a). This equipment uses a Nd: YAG continuous 
laser. To perform data collection, a  Mahr® rugosimeter 
was used; model M300 was connected to an RD18 measur-
ing device (Fig. 4b).

(7)

⎧
⎪⎪⎨⎪⎪⎩

Max � =
Entropy

GPE

St. ∶
m∑
i=1

wi = 1

0 ≤ wi ≤ 1,

3.2  Method

For this study, the process shown in the flowchart of 
Fig. 5 was followed. In Step 1, the DOE strategy must 
be applied to generate the experimental arrangement. 
Among the techniques, a CCD-type arrangement was 
used, which is a main type of response surface design. 
The limits of the main parameters of the LBM process 
[laser frequency—f (kHz); cutting speed—S (mm/min); 
and laser power—I (%)] were defined from preliminary 
tests, such that the chosen parameters are within the oper-
ational limits of the equipment. Table 1 shows the facto-
rial, axial, and central levels of each parameter. From 

Fig. 3  Machined surface workpieces

Fig. 4  a DML40SI LBM 
machine and b Mahr® M300 
rugosimeter
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this, these parameters were designed according to a CCD, 
created for three factors at two levels with eight factorial 
points  (2k = 23 = 8), six axial points (2k = 2 × 3 = 6) and 
six center points, totaling an experimental design of 20 
runs. The experiments were performed randomly and the 
results are stored in Table 2. The roughness measure-
ments are in µm and the MRR in  cm3/s. The parameter 
values were tested and chosen for a rough machining 
operation, where maximizing the MRR is the main target.

After completing the experiments and performing the 
data collection, one can continue with the applications 
of statistical and mathematical procedures highlighted 
in the flowchart of Fig. 5. These analyses are detailed 
in Sect. 4.

4  Results and discussion

4.1  LBM modeling

Following the model proposed in Fig. 5, after performing the 
experiments and collecting the responses, one must analyze 
the influence of the LBM process parameters on the quality 
characteristics analyzed (Step 2). Hence, one must use the 
second-order polynomial models developed using the RSM. 
The coefficient values of the quadratic function models were 
estimated using the ordinary least-squares algorithm, and 
shown in Table 3.

From the coefficients of the complete quadratic model, 
it is possible to verify that some terms are not significant 
for the model, that is, they are detrimental to the fit of the 
model. Therefore, the backward elimination strategy was 
applied to remove the non-significant term resulting in a 
new reduced model (bold values shown in Table 3), with 
R2

adj equal to 69.29%, 68.97%, 79.42%, 79.6%, 72.93%, 
and 92.34% for quality characteristics Ra, Rq, Rz, Rp, Rt 
and MRR, respectively. According to [33], in a process 
that presents multiple quality characteristics, one should 
consider the variance–covariance structure of the data. 
To determine the best method to analyze the responses, 
correlation analysis was performed for roughness and 
MRR (Step 3), to determine if the process characteristics 
exhibit a multivariate nature and thus to use an appropri-
ate technique. Table 4 presents the values of the Pearson 
coefficients and their respective p values. From this table, 
it can be verified that all the roughness responses (Ra, Rq, 
Rz, Rp, and Rt) present a high correlation, with Pearson 
values higher than 0.9. However, the MRR characteristic 
exhibits a lower correlation with the other characteristics 
analyzed, but with significant values for the multivariate 
study.

Owing to the significant correlations of the LBM process 
responses and its conflicting objectives, PCA can be used to 
reduce the response dimensionality and to analyze the cor-
related information adequately. Subsequently, the PCs found 
will be modeled and optimized by the NBI method to obtain 
the optimal points to solve the multiobjective problem.

4.2  Modeling and dimensionality reduction 
with PCA

Considering the multicorrelated structure of the quality 
characteristics, the PCA strategy is applied to reduce the 
dimensionality of the responses of interest (Step 4). The 
component scores, described in Table 2, can be extracted 
based on the correlation matrix. In addition, their respec-
tive eigenvectors and eigenvalues in Table 5 are verified. 
From this analysis, it is clear that the first two components 

Fig. 5  Proposed application flowchart

Table 1  Input parameters and levels

Input parameters Level

− 1.682 − 1 0 1 1.682

f [kHz] 11.2 15 20.5 26 29.7
S [mm/min] 29.5 200 450 700 870.4
I [%] 26.3 40 60 80 93.6
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are responsible for 98.5% of the explanation of variation 
structure from the six original analyzed responses (Table 5).

From the component scores  (PC1 and  PC2) described 
in Table 2, the response surface design is performed again 
to verify the coefficients and the regression model for 
the scores. Figure 6 presents the response surface graphs 
between the PCs and the input parameters obtained using the 
backward elimination strategy. The PC second-order models 

were obtained, and the R2
adj values were calculated to  PC1(x) 

equal to 77.78% and  PC2(x) equal to 77.24%.
Figure 7 shows the dendrogram illustrating the similarity 

level between the analyzed responses and the components 
(Step 5). It is possible to verify that the first component 
 (PC1(x)) exhibits a higher similarity level with the roughness 
responses (Ra, Rq, Rz, Rp, and Rt); thus, it must be minimized. 
In an antagonistic sense, if  PC2(x) presents a higher similar-
ity level with the MRR, then it must be maximized.

Table 2  Experimental matrix

Run Setup Responses PCA

f S I Ra Rq Rz Rp Rt MRR PC1 PC2

[kHz] [mm/min] [%] [µm] [µm] [µm] [µm] [µm] [cm3/s]

1 15.00 200.00 40.00 4.54 5.85 31.30 14.46 39.58 5.95 × 10− 4 − 1.38489 − 0.67172
2 26.00 200.00 40.00 2.12 2.65 12.77 6.70 14.00 4.20 × 10− 4 − 3.37942 − 0.45119
3 15.00 700.00 40.00 7.27 9.03 42.06 22.59 47.90 7.81 × 10− 4 0.17639 − 0.80031
4 26.00 700.00 40.00 3.68 4.53 17.47 8.82 18.86 4.21 × 10− 4 − 2.67046 − 0.63586
5 15.00 200.00 80.00 12.38 15.07 66.30 33.68 78.49 1.84 × 10− 3 3.51844 − 0.08308
6 26.00 200.00 80.00 5.28 6.91 35.33 20.30 45.70 6.57 × 10− 4 − 0.66515 − 0.76341
7 15.00 700.00 80.00 11.82 14.66 63.70 31.40 79.66 2.05 × 10− 3 3.32004 0.26908
8 26.00 700.00 80.00 6.08 7.25 36.26 17.15 52.88 2.33 × 10− 3 0.04538 1.50940
9 11.25 450.00 60.00 11.93 14.93 61.52 33.55 80.09 1.77 × 10− 3 3.32695 − 0.15310
10 29.75 450.00 60.00 3.14 4.71 14.96 8.04 17.93 1.21 × 10− 3 − 2.56914 0.47979
11 20.50 29.55 60.00 11.91 15.91 69.30 33.67 95.14 2.24 × 10− 4 3.36421 − 2.40146
12 20.50 870.45 60.00 3.07 4.14 26.24 12.64 30.49 1.24 × 10− 3 − 1.91331 0.40748
13 20.50 450.00 26.36 3.64 4.36 17.57 8.68 22.42 3.07 × 10− 4 − 2.67397 − 0.79702
14 20.50 450.00 93.64 10.73 12.92 71.64 32.47 89.21 2.70 × 10− 3 3.62322 1.19121
15 20.50 450.00 60.00 6.22 7.62 36.61 17.18 47.00 1.54 × 10− 3 − 0.26178 0.42284
16 20.50 450.00 60.00 5.90 7.38 36.71 17.81 42.50 1.57 × 10− 3 − 0.36696 0.49336
17 20.50 450.00 60.00 6.17 7.51 36.35 16.91 38.37 1.56 × 10− 3 − 0.44635 0.49681
18 20.50 450.00 60.00 6.23 7.71 36.14 18.10 41.29 1.56 × 10− 3 − 0.31495 0.45018
19 20.50 450.00 60.00 5.88 7.55 36.52 17.95 44.76 1.58 × 10− 3 − 0.30428 0.49439
20 20.50 450.00 60.00 6.17 7.60 35.60 17.33 38.25 1.60 × 10− 3 − 0.42395 0.54260
Utopia point (�yj ) 9.921 12.009 58.678 28.201 72.060 2.77 × 10− 3 − 4.1027 2.116

Table 3  Model coefficients for 
the RSM

Bold values represent the individually significant coefficients by backward elimination

Ra Rq Rz Rp Rt MRR PC1 PC2

Constant 6.1213 7.6045 36.5098 17.6221 42.3379 1.57 × 10− 3 − 0.330130 0.481718
f − 2.4613 − 2.9619 − 13.1681 − 6.7417 − 16.0162 − 1.74 × 10− 4 − 1.626700 0.147133
S − 0.7571 − 1.0843 − 4.2929 − 2.2368 − 6.3849 2.77 × 10− 4 − 0.446170 0.515182
I 2.1873 2.6527 13.8337 6.5888 18.2119 6.37 × 10 − 4 1.762310 0.500471
f2 0.3329 0.5104 − 0.5515 0.6504 0.4454 − 4.55 × 10− 5 0.109030 − 0.102384
S2 0.3166 0.5820 2.8179 1.4848 5.3262 − 3.14 × 10− 4 0.231560 − 0.512624
I2 0.2090 0.0934 1.6989 0.5721 2.8513 − 4.11 × 10− 5 0.142880 − 0.090451
f × S 0.0235 − 0.0680 − 0.3163 − 0.8600 0.3187 1.61 × 10− 4 0.007080 0.233071
f × I − 0.8550 − 0.9845 − 1.9113 − 0.7615 − 0.6187 − 4.62 × 10− 5 − 0.327110 0.021874
S × I − 0.5073 − 0.6405 − 2.1412 − 1.9600 − 0.6037 2.12 × 10− 4 − 0.219760 0.367278
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4.3  Multivariate LBM process optimization by NBI 
approach

From the knowledge of optimization directions for the 
NBI application, one can generate the payoff matrix for the 

Utopia and Nadir score points, as shown in Eq. (8)

From the strategy presented in Sect. 2.3, in Step 6, the 
NBI method was applied using the generalized reduced gra-
dient, where 0.05 was used as the weighting restriction to 
generate a Pareto frontier with 21 points. Figure 8 shows the 
equispaced Pareto frontier generated by NBI–PCA method 
and Table 6 presents the optimization data.

It is clear that the PCA and NBI combination resulted 
in an equispaced Pareto frontier, avoiding Pareto-optimal 
solutions agglomeration along the frontier. All 21 Pareto 
solutions can be considered optimal solutions. However, to 
determine the optimal point, the entropy/GPE criterion was 
used (Step 7) through Eqs. (5), (6), and (7). Table 6 shows 
the values found for the entropy/GPE method.

Considering the highest value for the entropy/GPE 
relation, we obtained the value of 0.119, representing, in 
the original quality characteristics, Y = [5.56; 6.8; 34.1; 
16.48; 37.79; 1.91 × 10− 3] for Ra, Rq, Rz, Rp, Rt, and MRR, 

(8)� =

[
− 4.103 1.099

− 0.626 2.116

]
.

Table 4  Correlation analysis for the LBM process characteristics

(1) Pearson correlation
(2) P value

Ra Rq Rz Rp Rt

Rq 0.996(1)

0.000(2)

Rz 0.973(1) 0.969(1)

0.000(2) 0.000(2)

Rp 0.979(1) 0.979(1) 0.989(1)

0.000(2) 0.000(2) 0.000(2)

Rt 0.960(1) 0.962(1) 0.987(1) 0.976(1)

0.000(2) 0.000(2) 0.000(2) 0.000(2)

MRR 0.460(1) 0.415(1) 0.500(1) 0.454(1) 0.462(1)

0.041(2) 0.069(2) 0.025(2) 0.044(2) 0.040(2)

Table 5  PCA applied to LBM responses

The values in bold represent the principal components that will be used in the study

Eigenvalue 5.1604 0.7522 0.0593 0.0189 0.007 0.0023
Proportion 0.860 0.125 0.010 0.003 0.001 0.000
Cumulative 0.860 0.985 0.995 0.998 1.000 1.000

Variable Eigenvectors

PC1 PC2 PC3 PC4 PC5 PC6

Ra 0.434 − 0.107 0.527 0.122 0.202 0.683
Rq 0.432 − 0.165 0.487 0.256 − 0.136 − 0.682
Rz 0.437 − 0.052 − 0.351 − 0.232 0.768 − 0.201
Rp 0.435 − 0.114 − 0.099 − 0.728 − 0.504 0.061
Rt 0.432 − 0.096 − 0.591 0.58 − 0.307 0.154
MRR 0.239 0.968 0.052 0.016 − 0.05 − 0.029

Fig. 6  Response surfaces to  PC1 and  PC2
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respectively. The machine input parameters for this point are 
x*

code = [0.591; 1.439; 0.639], representing f = 22.95 (kHz), 
S = 809.73 (mm/s), and I = 72.79 (%). The dimensionless 
values of the scores of the components were  PC1 = − 0.476 
and  PC2 = 1.849.

4.4  Confirmation runs

To prove the LBM multivariate optimization application 
efficiency, an 80% test power confirmation experiment was 
designed, totalizing five confirmation experiments. Start-
ing from the Pareto frontier optimum point, the experi-
ments were performed with the following machine input 
parameters x*

uncoded = [22.95; 809.73; 72.79]. The confir-
mation runs (Step 8) are shown in Table 7.

Finally, to verify if a statistical difference exists 
between the confirmatory runs, a hypothesis test was per-
formed. Because the null hypothesis (values are equal) is 
not rejected, i.e., no significant difference exists between 
the confirmation experiments and the optimal point found 
in the optimization, the efficiency of the method is proven. 
The established multivariate confidence intervals are pre-
sented in Table 7.

5  Performance of the NBI method for LBM 
process without dimensionality reduction

To demonstrate the performance of the NBI method with-
out reducing the dimensionality of the data through the 
multivariate PCA strategy, optimization was performed 
for all quality characteristics simultaneously. With this 

Fig. 7  Dendrogram of absolute correlation coefficient distance

Fig. 8  Pareto frontier between  PC1 and  PC2
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application, without considering the multicorrelated 
structure of the data in the calculations, the six interest 
responses were analyzed, thus generating a high number 
of NBI subproblems, i.e., a total of 259. Using the entropy/
GPE method to obtain the optimal point, it was observed 

that the main interest response (MRR), presented a lower 
value than that obtained by the NBI–PCA method.

Thus, comparing the best results of each approach, it 
can be inferred that the multivariate method yielded a bet-
ter MRR value. This result was expected, because the data 
present a variance–covariance structure that should be 

Table 6  Optimal solutions for NBI–PCA approach

The values in bold represent the optimal point found by the method

β1 β2 Uncoded setup NBI-PCA approach response optmization

f S I Ra Rq Rz Rp Rt MRR PC1 PC2 Entropy/GPE

[kHz] [mm/min] [%] [µm] [µm] [µm] [µm] [µm] [cm3/s]

0.00 1.00 21.181 751.646 82.950 7.723 9.450 46.802 22.740 54.204 2.43 × 10− 3 1.099733 2.116125 1.72 × 10− 8

0.05 0.95 21.758 774.560 80.192 7.067 8.643 42.980 20.848 49.258 2.29 × 10− 3 0.627975 2.09057 9.43 × 10− 2

0.10 0.90 22.219 790.548 77.616 6.510 7.959 39.710 19.235 45.027 2.15 × 10− 3 0.222474 2.030089 1.20 × 10− 1

0.15 0.85 22.612 801.846 75.164 6.015 7.353 36.787 17.797 41.249 2.03 × 10− 3 − 0.1414 1.947665 1.28 × 10− 1

0.20 0.80 22.954 809.726 72.791 5.563 6.801 34.109 16.484 37.791 1.91 × 10− 3 − 0.4758 1.84973 1.29 × 10− 1

0.25 0.75 23.256 814.893 70.469 5.145 6.292 31.618 15.265 34.577 1.80 × 10− 3 − 0.78798 1.740039 1.26 × 10− 1

0.30 0.70 23.526 817.730 68.184 4.753 5.816 29.277 14.122 31.557 1.69 × 10− 3 − 1.08242 1.621016 1.21 × 10− 1

0.35 0.65 23.769 818.483 65.920 4.383 5.368 27.058 13.042 28.698 1.58 × 10− 3 − 1.36232 1.494326 1.14 × 10− 1

0.40 0.60 23.990 817.261 63.671 4.033 4.945 24.943 12.015 25.976 1.48 × 10− 3 − 1.62995 1.361173 1.07 × 10− 1

0.45 0.55 24.190 814.085 61.431 3.699 4.543 22.919 11.034 23.374 1.38 × 10− 3 − 1.88702 1.222451 9.86 × 10− 2

0.50 0.50 24.370 809.079 59.179 3.379 4.160 20.976 10.096 20.877 1.29 × 10− 3 − 2.1348 1.078838 9.02 × 10− 2

0.55 0.45 24.531 802.086 56.915 3.073 3.794 19.105 9.195 18.477 1.19 × 10− 3 − 2.3743 0.930853 8.15 × 10− 2

0.60 0.40 24.674 792.990 54.628 2.780 3.445 17.302 8.329 16.168 1.11 × 10− 3 − 2.60624 0.778884 7.26 × 10− 2

0.65 0.35 24.800 781.568 52.307 2.499 3.113 15.562 7.498 13.945 1.02 × 10− 3 − 2.83113 0.623204 6.37 × 10− 2

0.70 0.30 24.908 767.422 49.945 2.230 2.797 13.886 6.700 11.808 9.40 × 10− 4 − 3.04928 0.463968 5.47 × 10− 2

0.75 0.25 24.995 750.082 47.515 1.975 2.498 12.274 5.938 9.760 8.62 × 10− 4 − 3.2607 0.301184 4.56 × 10− 2

0.80 0.20 25.060 728.601 45.003 1.733 2.219 10.734 5.214 7.812 7.87 × 10− 4 − 3.46499 0.134641 3.66 × 10− 2

0.85 0.15 25.107 701.341 42.399 1.508 1.965 9.278 4.538 5.988 7.16 × 10− 4 − 3.66094 − 0.03629 2.75 × 10− 2

0.90 0.10 25.133 665.246 39.672 1.306 1.744 7.942 3.926 4.341 6.50 × 10− 4 − 3.84545 − 0.21327 1.84 × 10− 2

0.95 0.05 25.176 612.848 36.914 1.142 1.580 6.821 3.429 3.031 5.92 × 10− 4 − 4.00888 − 0.40134 9.26 × 10− 3

1.00 0.00 25.606 526.852 35.697 1.057 1.536 6.322 3.217 2.740 5.71 × 10− 4 − 4.10266 − 0.62614 0.000

Table 7  Confirmation runs for 
NBI–PCA approach for LBM

The values in bold represent the mean values found in the confirmation experiment
a CI UB multivariate upper bound for confidence interval
b CI LB lower bound

Run Ra Rq Rz Rp Rt MRR
[µm] [µm] [µm] [µm] [µm] [cm3/s]

1 5.61 6.86 35.92 16.82 40.46 1.98 × 10− 3

2 5.69 7.18 36.57 17.37 41.13 1.96 × 10− 3

3 5.6 6.91 34.67 16.77 39.8 1.92 × 10− 3

4 5.58 6.9 34.54 16.63 39.67 1.95 × 10− 3

5 5.61 6.88 35.01 16.52 39.22 1.94 × 10− 3

Mean 5.618 6.946 35.342 16.822 40.056 1.950 × 10− 3

SD 4.21 × 10− 2 1.32 × 10− 1 8.73 × 10− 1 3.28 × 10− 1 7.47 × 10− 1 2.24 × 10− 2

aCI UB 5.721 7.269 37.478 17.625 41.883 2.005 × 10− 3

Pareto 5.563 6.801 34.109 16.484 37.791 1.91 × 10− 3

bCI LB 5.515 6.623 33.206 16.019 38.23 1.895 × 10− 3



Engineering with Computers 

1 3

considered, considering the multivariate data. In addition, 
the multivariate method provides a significant contribu-
tion in computational effort to obtain the optimal solutions, 
because it presents a smaller subproblem number, with a 
91.89% reduction (from 259 to 21 subproblems).

6  Conclusion

LBM is a promising machining method owing to non-
contact material removal, high precision machining, and 
no tool wear. As it is an expensive process and presents 
many quality responses, this study proposed a multivari-
ate approach to optimize the LBM process to reduce the 
dimensionality of the problems and to obtain an optimal 
solution. In view of the correlated data structure, it was 
possible to apply a multivariate strategy to reduce the 
dimensionality of the optimization problems. The RMS 
methodology and NBI optimization method were also used 
to provide a smaller number of experiments and an equis-
paced Pareto frontier. Therefore, the following conclusions 
can be drawn:

• The proposed approach yielded an optimal point in x* = 
[22.95 kHz; 809.73 mm/s; 72.79%]. These results pro-
vided an optimum value for the responses, with the MRR 
equal to 0.639  cm3/s and the roughness Ra = 5.56 µm; Rq 
= 6.8 µm; Rz = 34.1 µm; Rp = 16.48 µm; Rt = 37.79 µm.

• The NBI–PCA approach applied to LBM provided a 
dimensional reduction of the problem; simultaneously, it 
promoted a smaller number of optimization subproblems 
(from 259 to 21 subproblems), and a 91.89% reduction.

• The optimal parameters determined by the NBI–PCA 
approach were verified by confirmation runs. The results 
were presented within the multivariate confidence inter-
vals, evidencing the method capability when applied to 
LBM.
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